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Abstract: As global energy demands rise and land availability for renewable energy infrastructure becomes 

increasingly scarce, Floating Photovoltaic (FPV) systems have emerged as an innovative solution that utilizes 

underused water surfaces for solar energy generation. These systems not only conserve land but also benefit from 

natural water cooling, increasing efficiency and reducing evaporation. However, the dynamic and aquatic nature of 

FPVs introduces operational complexities that require intelligent solutions. Artificial Intelligence (AI) has become 

instrumental in overcoming these challenges, enabling smart forecasting, performance optimization, fault detection, 

and predictive maintenance. This paper presents a systematic review of the latest AI techniques—ranging from 

machine learning (ML) and deep learning (DL) to hybrid and explainable AI (XAI) models—deployed in FPV 

systems. It examines key components such as data inputs, model architectures, simulation tools, and performance 

metrics including RMSE, MAE, and R². Through comparative analysis and real-world case studies across geographies, 

the review highlights the growing role of AI in enhancing FPV system scalability, reliability, and efficiency. 

Keywords: Floating solar, FPV, Artificial Intelligence, Machine Learning, Deep Learning, Forecasting, Smart grid, 

Renewable energy, XAI, Photovoltaic optimization. 

I. Introduction 

In the face of global climate change, rising energy demands, and the depletion of conventional fossil fuel resources, 

solar energy has emerged as a vital component in the transition to sustainable energy systems. While ground-mounted 

photovoltaic (PV) systems have become widely adopted, they pose certain limitations—most notably, the requirement 

for vast land areas, which often competes with agriculture, urban development, and biodiversity conservation. This 

challenge has sparked interest in innovative alternatives such as Floating Photovoltaic (FPV) systems, also known as 

floating solar farms. The placing of PV panels on top of bodies of water is called floating photovoltaics (FPV) or 

floatovoltaics [1]. Countries that are facing challenges with land availability for PV farms are looking towards the 

potential of FPV.  FPVs involve the deployment of solar panels on buoyant structures placed on water bodies like 

reservoirs, lakes, ponds, and even offshore locations [2]. This approach not only helps preserve land but also offers 

multiple technical and environmental advantages. The water beneath the panels provides a natural cooling effect, 

which can significantly improve the efficiency and lifespan of the solar modules. Additionally, FPVs reduce water 

evaporation in arid regions, contributing to water resource management. By leveraging underutilized water surfaces, 

FPVs also support decentralized power generation and can be easily integrated into existing hydropower 

infrastructure, offering hybrid energy solutions [3]. As a result, FPVs are rapidly expanding across countries such as 

China, India, Japan, and the Netherlands, and are viewed as a key innovation in the global renewable energy landscape. 
Despite their numerous advantages, FPV systems face several unique and complex challenges [4]. These include 

fluctuating weather patterns, wave dynamics, anchoring and mooring issues, and maintenance difficulties due to their 

aquatic environment [5]. In addition, predicting energy output from floating systems is inherently more difficult due 

to changing irradiance, temperature variations, and the limited availability of high-quality FPV datasets. Traditional 

control and monitoring systems often fall short in handling such complexity in real time. This has led to a growing 

interest in Artificial Intelligence (AI) as a transformative tool for managing and optimizing floating solar power plants 

[6]. 

 
Fig. 1. Classification of solar  

AI techniques, particularly machine learning (ML), deep learning (DL), and evolutionary algorithms, offer powerful 

capabilities for pattern recognition, predictive analytics, and decision-making. In FPV applications, AI can be used to 

accurately forecast solar radiation, identify and classify system faults, optimize tilt angles and array layouts, perform 

intelligent maintenance scheduling, and even predict system degradation over time [7]. Deep learning models can 

process satellite images and sensor data to improve the accuracy of weather predictions, while ML algorithms can 

learn from historical data to optimize energy harvesting strategies [8]. Furthermore, AI-driven control systems can 
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adapt dynamically to environmental changes, enhancing both the reliability and resilience of FPV operations. The 

integration of AI into FPVs is not just about automation—it's about enabling smarter, more adaptive energy systems 

that can self-learn, self-correct, and continuously improve without manual intervention. As floating solar technology 

scales up, the synergy between AI and FPVs is expected to play a critical role in making solar energy more efficient, 

predictive, and scalable for the future [9]. This review aims to systematically analyze and categorize various AI 

techniques applied to FPV systems, evaluating their effectiveness and performance. The paper explores how different 

AI models—such as machine learning, deep learning, and hybrid approaches—are being used to solve key challenges 

in FPVs. It also benchmarks their accuracy, efficiency, and real-world applicability by reviewing key studies and 

experiments. The ultimate goal is to provide researchers, developers, and policymakers with a clear understanding of 

how AI is shaping the future of floating solar technology. 

II. FLOATING SOLAR POWER PLANTS 

These floating solar plants are installed on water reservoirs like dams, lakes, rivers, oceans, etc. [10]. The solar panels 

are mounted on floating platforms which are anchored tightly to so that it will not get damaged even under the worse 

weather conditions. Moreover, research suggests that solar panels installed on land surfaces results in the reduction of 

yields, as the ground gets heated up and affects the rear surfaces of solar panel [11]. Studies also suggests that if the 

rear surfaces of solar panels are placed on the top of the water, the solar panels will be able to cool themselves more 

efficiently which means they will last longer and they can shade the water they float on which reduces evaporation by 

up to 70%, also their ability to generate power goes up as high as to 16% [12]. The combination of PV plant technology 

and floating technology gives a photovoltaic (PV) floating power generation. This fusion of new concept consists of 

floating system which is a floating body (structure + floater) that allows the installation of the PV module, PV system 

i.e., PV generation equipment, similar to electrical junction boxes, that are installed on top of the floating system and 

underwater cable which transfers the generated power to the PV system development [13]. 

 
Fig. 2 Basic structure of floating solar power plant [14] 

Figure 2 illustrates the basic structure of a floating solar power plant, highlighting its key components and operational 

layout. At the center of the system are the PV (photovoltaic) modules mounted on pontoons, which provide buoyancy 

and support to keep the solar panels afloat on the water surface. The generated electricity is transmitted to the shore 

through underwater cables, ensuring safe and efficient power transfer. To maintain stability and prevent drifting due 

to wind or water currents, the system is anchored using a mooring system that fixes the floating platform in place. On 

land, the electricity passes through a power converter that conditions the output, and then is transferred to the grid via 

power transmission lines. This layout exemplifies how floating solar plants utilize available water surfaces while 

integrating seamlessly into existing electrical infrastructure. 
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Fig. 3 A 145-megawatt floating solar plant 

Figure 3 shows a 145-megawatt floating solar plant, demonstrating the large-scale deployment of photovoltaic 

modules on a water body. This setup reflects the growing trend of utilizing unused water surfaces for clean energy 

generation, helping to reduce land usage while maximizing solar energy capture. The plant highlights the scalability 

and efficiency of floating solar technology in supporting sustainable power infrastructure. 

Floating solar arrays are PV systems that float on the surface of drinking water reservoirs, quarry lakes, irrigation 

canals or remediation and tailing ponds. A small number of such systems exist in France, India, Japan, South Korea, 

the United Kingdom, Singapore and the United States. The systems are said to have advantages over photovoltaic 

plant on land. The cost of land is more expensive, and there are fewer rules and regulations for structures built on 

bodies of water not used for recreation. Unlike most land based solar plants; floating arrays can be unobtrusive because 

they are hidden from public view. They achieve higher efficiencies than PV panels on land, because water cools the 

panels. The panels have a special coating to prevent rust or corrosion. 

 

 

A. Components of floating power plant 

Floating Solar Power plant is an innovative concept in energy technology to meet the needs of our time. The floating 

PV system is a new method of solar-energy generation utilizing water surface available on dams, reservoirs, and other 

bodies of water resulting from the combination of PV technology and floating technology The floating PV plant 

consists of a floating system, mooring system, PV system and underwater cables [15]. 

1. Pontoon / Floating Structure 

A pontoon is a floating platform designed with sufficient buoyancy to support heavy loads while remaining stable on 

the water surface. It serves as the foundation for mounting multiple photovoltaic (PV) modules. The structural design 

ensures durability and balance, enabling efficient solar energy capture while withstanding environmental forces [16]. 

The floating structure is a critical component that enables the installation and operation of solar modules on water 

bodies. Add weight-effective plastic recesses several times to form a larger pontoon. Floats are generally made of 

HDPE (high-density. polythene), which is identified for its precise, nonrenewable strength, UV resistance and, 

corrosion resistance. GRP (Glass fiber reinforced plastic) can also be used to create float platforms. HDPE is typically 

used to fuel tanks production, bottles and, pipes for water supply and can also be reprocessed [17]. 

 
Fig. 4. Pontoon Structure [18]. 

Figure 4 depicts the pontoon structure used in floating solar power plants. The image shows modular, interlocking 

floating units—often referred to as floating desks—which combine to form a stable platform on the water. Made of 

durable, UV-resistant plastic, these pontoons are designed to provide high buoyancy and structural support for 

mounting photovoltaic (PV) panels. Their interlocking design ensures flexibility and ease of assembly, allowing the 



 

143 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 07, Issue 04, December-2024 

Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 07, Issue 04, December-2024 

Available at www.rjetm.in/ 

formation of various configurations depending on the plant size and site conditions. This structure serves as the 

floating foundation for the entire solar array deployed over the water surface. 

2. Mooring system 

Mooring systems generally refer to permanent structures capable of storing containers. Examples include quays, 

wharfs, jetties, piers, anchor buoys, and mooring buoys. When the solar system is turned off, the system can keep the 

panel in the same position in the morning and prevent the panel from folding or turning off. Installing a mooring 

system in deep water can be difficult and expensive. A wire rope and a nylon harness can be used to complete the 

mooring system of the exit platform. The rope can be attached to the terminal on the edge and hit at any corner [19]. 

 

 
Fig. 5. Mooring system of floating PV with active cooling design 

Figure 5 illustrates the mooring system of a floating photovoltaic (PV) plant integrated with an active cooling design. 

The image shows a large array of solar panels mounted on a floating platform, secured in place by a network of 

mooring lines connected to anchoring points. These mooring lines prevent the structure from drifting due to wind or 

water currents while allowing flexibility to accommodate changes in water levels. The highlighted yellow outlines 

represent the mooring framework encircling the array. The design also supports active cooling, which helps maintain 

optimal panel temperatures, thereby enhancing energy conversion efficiency and prolonging system lifespan in high-

temperature environments. 

 

 

3. Solar Module 

Solar modules, also known as photovoltaic (PV) modules, are the primary energy-generating components of the 

floating solar plant. These modules are mounted on the floating structure and work by converting sunlight into 

electrical energy. Since each module generates a limited amount of power, multiple modules are typically connected 

in an array. A complete PV system often includes modules, a solar inverter, interconnection wiring, and in some cases, 

battery storage and solar trackers. Floating solar systems commonly use crystalline silicon-based PV modules due to 

their efficiency and reliability [20]. 

4. Cabling 

Cabling in floating solar systems is essential for transmitting the generated electricity from the floating PV modules 

to the onshore substation. These cables are designed for harsh environmental conditions and are resistant to ultraviolet 

(UV) radiation, moisture, and extreme temperature changes. Given their exposure to outdoor environments and 

potential submersion, solar cables used in FPV systems are highly durable, weather-resistant, and capable of 

maintaining stable performance under dynamic conditions [21]. 

B. Merits Of Floating Power Plant 

Floating solar power plants offer several advantages over traditional ground-mounted and rooftop solar systems, 

particularly in terms of performance and environmental impact. One of the key benefits is the increased energy 

efficiency—thanks to the natural cooling effect of the water beneath the panels, floating PV systems typically generate 

more electricity than their land-based counterparts [22]. Additionally, by shading the water surface, these installations 

help to significantly reduce water evaporation and inhibit algae growth, contributing to better water resource 

management, especially in arid regions. The floating platforms are also engineered for durability, capable of 

withstanding harsh weather conditions such as storms, typhoons, and strong winds, making them reliable even in 

extreme environments. Moreover, these systems are designed using high-density polyethylene (HDPE), a material 

that is 100% recyclable, UV-resistant, and corrosion-resistant, ensuring both sustainability and long-term structural 

integrity [23]. 

Another major advantage of floating solar systems is their minimal land disturbance. Unlike ground-mounted systems, 

which often require large tracts of land that could otherwise be used for agriculture or forestry, floating plants utilize 

unused water bodies such as lakes, reservoirs, and ponds. This helps in conserving the natural landscape and 
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maintaining biodiversity. Additionally, floating solar plants can accommodate a large number of PV modules, making 

them suitable for utility-scale installations [24]. Their modular design allows for easy and quick deployment, often 

with shorter installation timelines compared to ground systems. Combined with their adaptability to a wide range of 

geographic locations with abundant sunlight, floating solar power plants present a highly efficient, eco-friendly, and 

scalable solution for renewable energy generation [25]. 

III. Foundations of AI in Solar PV Systems 

The use of Artificial Intelligence (AI) in solar photovoltaic (PV) systems has grown substantially in recent years, 

enabling improved performance in forecasting, control, and fault detection. Among AI techniques, Machine Learning 

(ML) and Deep Learning (DL) models such as Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), 

Extreme Learning Machines (ELMs), and Long Short-Term Memory (LSTM) networks are widely used due to their 

ability to handle complex, nonlinear, and time-dependent data patterns [26]. ANNs have been praised for their 

robustness in approximating nonlinear relationships in PV output prediction, though they require long training times 

and large datasets [27]. SVMs, on the other hand, have proven efficient for smaller datasets and offer strong 

generalization abilities in high-dimensional feature spaces [28]. ELMs have demonstrated high-speed training and 

solid prediction accuracy in studies focused on short-term PV forecasting under fluctuating weather conditions [29]. 

LSTM networks stand out for time-series forecasting, where their ability to remember long-term dependencies has 

made them superior in predicting solar irradiance and power generation over time [30]. In recent years, the field has 

also embraced Explainable AI (XAI) to make complex AI models more interpretable and transparent. XAI tools such 

as SHAP (Shapley Additive Explanations) and LIME (Local Interpretable Model-Agnostic Explanations) are now 

being applied in solar power forecasting to understand the contribution of each input variable to the final prediction 

[31]. These methods not only help in model debugging and trust building but also improve decision-making for PV 

system operators by identifying the most influential parameters, such as solar irradiance, temperature, and humidity 

[32]. However, current XAI adoption is more prevalent in ML than DL models due to challenges in interpreting deep 

architectures [33]. 

Another crucial aspect in PV forecasting models is the quality and variety of input data. Common data sources include 

satellite observations, meteorological stations, on-site sensors, and open-access datasets like NASA’s POWER or the 

National Renewable Energy Laboratory (NREL) archives [34]. Parameters such as solar irradiance, panel temperature, 

wind speed, tilt angle, and humidity are commonly used to train AI models [35]. Some studies have proposed hybrid 

approaches combining statistical decomposition methods (e.g., STL or EMD) with AI models to improve accuracy by 

preprocessing noisy input signals [36]. Overall, the synergy between sophisticated algorithms, explainable 

frameworks, and rich data sources forms the backbone of reliable and accurate solar PV system modeling [37]. 

 

Table 1: Comparative Overview of AI Techniques and Applications in Solar PV Systems 

 

AI Technique  Advantage Application in PV 

Systems 

Limitation  Ref. No. 

Machine 

Learning & 

Deep Learning 

Handle complex, 

nonlinear, and time-

dependent patterns 

Forecasting, control, 

and fault detection 

Model selection 

and data 

dependency 

[26] 

ANN (Artificial 

Neural Network) 

Robust in modeling 

nonlinear 

relationships 

PV output prediction Needs large 

datasets and long 

training times 

[27] 

SVM (Support 

Vector Machine) 

Works well with 

small datasets and 

high-dimensional 

data 

Performance 

prediction and 

classification 

Depends on kernel 

and tuning 

[28] 

ELM (Extreme 

Learning 

Machine) 

Fast training and 

good prediction 

accuracy 

Short-term PV 

forecasting under 

changing weather 

Sensitive to 

initialization, less 

robust 

[29] 

LSTM (Long 

Short-Term 

Memory) 

Learns long-term 

dependencies in 

time-series 

Solar irradiance and 

power prediction 

Computational 

cost, needs careful 

parameter tuning 

[30] 

Explainable AI 

(XAI) Tools 

(SHAP, LIME) 

Makes AI models 

transparent and 

interpretable 

Explaining feature 

impact in solar 

forecasting 

Difficult to apply to 

deep models 

[31] 



 

145 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 07, Issue 04, December-2024 

Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 07, Issue 04, December-2024 

Available at www.rjetm.in/ 

Importance of 

Input Parameters 

Identifies key 

features like 

irradiance, temp, 

humidity 

Assists in model 

interpretation and 

system decisions 

Depends on 

accurate and 

reliable feature data 

[32] 

XAI Adoption in 

DL Models 

Insight into why 

predictions are made 

Enhances trust and 

usability in complex 

models 

Less developed for 

deep learning 

architectures 

[33] 

Data Sources 

(e.g., NASA, 

NREL) 

Rich, varied sources: 

satellite, sensors, 

open datasets 

Input to forecasting 

models 

Can be noisy or 

incomplete 

[34] 

Meteorological 

& Sensor 

Parameters 

Includes irradiance, 

temp, humidity, tilt 

angle, etc. 

Core features for AI 

model training 

Must handle data 

variation and errors 

[35] 

Hybrid Models 

(e.g., STL + AI) 

Preprocessing 

improves accuracy 

in noisy conditions 

Used in forecasting 

under real-world 

weather variation 

Complexity and 

integration issues 

[36] 

Integrated AI-

Powered PV 

Modeling 

Combines 

algorithms, XAI, 

and data for high 

performance 

Full solar PV system 

optimization 

Balancing 

accuracy, speed, 

and interpretability 

[37] 

Table 1 provides a structured comparison of various Artificial Intelligence (AI) techniques and supporting components 

used in solar photovoltaic (PV) system modeling. It outlines the key advantages, specific applications, and notable 

challenges associated with each method. Each row corresponds to a particular AI model, data consideration, or 

framework, with an associated reference number linking back to relevant research or literature. This table highlights 

the synergy between machine learning models, explainability tools, and diverse data sources in enhancing the 

accuracy, interpretability, and reliability of PV forecasting and control systems. 

IV. Studies and Benchmarking 

A comparative analysis of AI techniques for solar PV systems reveals a wide array of models, each offering unique 

strengths under varying environmental conditions and use cases. Among the most prominent are ANN, SVM, ELM, 

and LSTM. Studies show that while ANN offers high accuracy in energy forecasting tasks, its performance may 

degrade under partial shading without hybridization [38]. SVM has been shown to outperform traditional methods 

under dynamic weather due to its ability to handle high-dimensional data with different kernel functions [39]. 

Meanwhile, ELM provides faster computation and competitive accuracy, especially in systems requiring real-time 

responses [40]. LSTM, known for its strength in handling time-series data, has emerged as a preferred deep learning 

architecture in long-term PV power forecasting, particularly in environments with strong temporal correlations in solar 

irradiance data. Performance benchmarking relies heavily on evaluation metrics such as Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), R-squared (R²), and Mean Absolute Percentage Error (MAPE). These metrics 

are commonly used to compare the prediction accuracy of different AI models across real-time and historical datasets. 

For example, Das et al. reported that the SVM model achieved RMSE and MAE values of 12.41% and 6.95%, 

respectively, significantly outperforming classical regression methods [41]. Other comparative studies show that ANN 

and LSTM models consistently outperform other algorithms across multiple benchmarks, with accuracies exceeding 

90% when trained on adequately preprocessed datasets [42][43]. Real-world implementations of these AI techniques 

vary geographically, reflecting different solar potential and policy environments. In Japan and Germany, AI models 

are used in large-scale solar farms with integrated weather forecasting systems [44]. In India and North Africa, hybrid 

models (e.g., SVM+PSO or ANN+Wavelet) are adopted to deal with irregular solar patterns caused by monsoonal 

and desert climates [45]. Some implementations also utilize floating solar systems, particularly in water-scarce 

regions, with AI optimizing panel angle and cleaning schedules [46]. 

The choice of simulation tools and datasets significantly affects benchmarking outcomes. Widely used platforms 

include MATLAB/Simulink, Python (Scikit-learn, TensorFlow), and PV-specific libraries like PVsyst. Real-world 

datasets such as NASA POWER, NREL, and site-specific sensor data are used for training and validating models. 

Researchers have also employed synthetic datasets generated using solar simulators or data augmentation techniques 

to overcome the lack of continuous real-world observations [47]. Furthermore, digital twin frameworks and big data 

integration are emerging trends in enhancing simulation fidelity and benchmarking depth [48]. 
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Table 2: Comparative Overview of AI Techniques, Performance Metrics, and Real-World Applications in Solar PV 

Systems 

 

AI Technique  Advantage  Application  Limitation  Ref. No. 

ANN under Partial 

Shading 

High accuracy in 

energy forecasting 

Energy forecasting in 

PV systems 

Degrades under 

partial shading 

without hybrid 

approach 

[38] 

SVM with Kernel 

Functions 

Effective in dynamic 

weather; handles high-

dimensional data 

Solar forecasting in 

varying climates 

Requires careful 

kernel selection 

[39] 

ELM for Real-

Time Prediction 

Faster computation 

with competitive 

accuracy 

Real-time responsive 

PV systems 

May be less robust 

to noise 

[40] 

LSTM for Time-

Series Forecasting 

Strong in learning 

temporal patterns in 

irradiance 

Long-term PV power 

prediction 

Computational 

complexity 

[41] 

SVM Benchmark 

by Das et al. 

RMSE: 12.41%, MAE: 

6.95% — 

outperforming 

regression methods 

Benchmarking 

accuracy of models 

Needs optimal 

parameter tuning 

[42] 

ANN & LSTM 

Accuracy 

Accuracy >90% with 

good preprocessing 

Benchmark studies on 

multiple datasets 

Dependent on data 

preprocessing 

quality 

[43] 

LSTM Dominance 

in Benchmarks 

Consistently better 

accuracy than 

traditional models 

Used across different 

environments 

Needs large datasets 

and computation 

[44] 

Large-Scale Use in 

Japan & Germany 

Integrated AI with 

weather forecasting in 

solar farms 

Grid-connected PV 

systems 

Relies on quality of 

weather data 

systems 

[45] 

Hybrid AI in India 

& North Africa 

Combines AI with 

metaheuristics (e.g., 

SVM+PSO) to handle 

irregular irradiance 

Solar forecasting in 

desert/monsoon zones 

Increased 

complexity, harder 

to maintain 

[46] 

Floating Solar with 

AI 

AI helps optimize tilt 

and cleaning schedules 

Deployed in water-

scarce regions 

Deployment and 

maintenance 

challenges 

[47] 

Tools & Dataset 

Selection 

Use of platforms like 

MATLAB, Python, 

PVsyst with 

NASA/NREL data 

Model simulation and 

validation 

Accuracy depends 

on tool and dataset 

quality 

[48] 

 

Table 2 provides a detailed comparative analysis of various Artificial Intelligence (AI) techniques and their real-world 

applications in solar photovoltaic (PV) systems. It highlights how models such as ANN, SVM, ELM, and LSTM offer 

distinct advantages in forecasting and decision-making, depending on the environmental conditions and data 

availability. The table also presents performance benchmarks using standard error metrics, showing how models like 

SVM and LSTM outperform traditional approaches. Furthermore, it explores practical implementations across 
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different regions, such as the use of hybrid models in India and floating solar systems in water-scarce areas. The choice 

of simulation tools and datasets, as well as the integration of advanced technologies like digital twins and big data, 

plays a crucial role in determining the effectiveness and reliability of AI-driven PV system modeling. Each row is 

supported by a specific reference to ensure traceability and credibility of the information presented. 

 

V. ENVIRONMENTAL EFFECTS OF FLOATING SOLAR 

 

Floating solar platforms are innovative systems that enable standard photovoltaic (PV) panels to be installed on the 

surface of large water bodies such as drinking water reservoirs, quarry lakes, irrigation canals, tailing ponds, and 

wastewater lagoons. These systems provide a practical solution for regions or industries where land availability is 

limited or where land use is prioritized for agriculture, infrastructure, or conservation. By utilizing unused water 

surfaces, floating solar helps avoid land acquisition costs and land-use conflicts, making it especially attractive for 

densely populated or land-scarce areas [49]. A simple, modular, and cost-effective floating solar platform is 

particularly well-suited for energy- and water-intensive industries that cannot afford to compromise on either resource. 

Industries such as wineries, dairy farms, fish farms, mining operations, wastewater treatment facilities, irrigation 

districts, and public water agencies stand to benefit significantly from this dual-purpose approach [50]. The synergy 

created between sun and water not only generates clean energy but also reduces water evaporation due to the shading 

effect of the panels, conserves water quality by limiting algae growth, and can improve panel efficiency due to the 

cooling effect of the underlying water surface. Furthermore, floating solar can be integrated with existing water 

infrastructure without disrupting current usage patterns. For example, in fish farms or irrigation canals, it is possible 

to install PV systems without hindering operational access or aquatic ecosystems. This makes floating solar an 

appealing sustainable technology that supports decarbonization while addressing critical water and land resource 

challenges. As energy demand and climate pressures increase, the adoption of floating solar platforms represents a 

smart, multipurpose solution aligned with both environmental and economic goals [51]. 

 

VI. Challenges 

One of the most persistent challenges in applying AI to solar PV systems is the availability and quality of data. 

Accurate forecasting and fault detection depend heavily on high-resolution, time-synchronized, and long-term datasets 

that capture variables like solar irradiance, temperature, humidity, and panel conditions. However, in many regions—

especially developing countries—meteorological stations are sparse, sensor calibration is inconsistent, and missing or 

noisy data is common. Public datasets like NASA POWER or NREL are valuable but often lack the granularity or 

local relevance needed for highly accurate predictions. This limitation affects the training and validation of AI models, 

particularly those requiring large and diverse datasets such as LSTM or deep hybrid models. As AI models grow more 

advanced, so does their demand for computational resources. Deep learning architectures like LSTM, CNNs, and 

hybrid AI models combining optimization algorithms (e.g., ANN + PSO or SVM + GA) offer high accuracy but come 

with increased training time, memory requirements, and complexity in tuning hyperparameters. This creates barriers 

for real-time deployment in edge environments, such as remote PV installations where computing power and internet 

connectivity are limited. Moreover, highly complex models may act as “black boxes,” limiting their interpretability 

and acceptance among PV system operators who require transparent, explainable models for operational decision-

making. To overcome current gaps, emerging AI trends are gaining traction. Edge AI allows models to run locally on 

low-power devices, enabling real-time analytics at the source—ideal for remote or off-grid PV systems. Transfer 

Learning offers a solution to data scarcity by allowing pre-trained models on large datasets to be fine-tuned with 

smaller, local datasets, reducing the need for extensive retraining. Federated Learning is another promising approach 

that enables collaborative model training across decentralized data sources (e.g., multiple solar farms) without 

compromising data privacy. These innovations, coupled with improved data governance and standardized protocols, 

can significantly enhance scalability and reliability. 

 

VII. Conclusion 

Floating Photovoltaic (FPV) systems represent a transformative step in sustainable energy production by addressing 

land scarcity while maximizing energy yield through natural cooling and water-shading benefits. However, their 

deployment brings forth new operational challenges due to environmental variability and structural dynamics. This 

review demonstrates how Artificial Intelligence (AI) is not only well-suited but essential for optimizing FPV systems. 

Machine Learning models like SVM and ANN offer effective short-term forecasting, while Deep Learning models 

such as LSTM and CNN provide robust long-term predictive capabilities. The integration of Explainable AI (XAI) 

and hybrid methods enhances both transparency and performance. Furthermore, advancements in edge computing, 

digital twins, and federated learning are paving the way for autonomous, scalable FPV solutions. Real-world 
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implementations in countries like India, Japan, and Germany affirm the practical viability of these smart systems under 

varied environmental and regulatory settings. Still, challenges remain in terms of data availability, computational cost, 

and standardization. Future research should focus on high-fidelity simulations, localized datasets, and adaptable AI 

frameworks. As FPV deployment accelerates globally, AI will serve as a critical enabler for smarter, cleaner, and 

more resilient energy infrastructure. 
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