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Abstract: As global energy demands rise and land availability for renewable energy infrastructure becomes
increasingly scarce, Floating Photovoltaic (FPV) systems have emerged as an innovative solution that utilizes
underused water surfaces for solar energy generation. These systems not only conserve land but also benefit from
natural water cooling, increasing efficiency and reducing evaporation. However, the dynamic and aquatic nature of
FPVs introduces operational complexities that require intelligent solutions. Artificial Intelligence (Al) has become
instrumental in overcoming these challenges, enabling smart forecasting, performance optimization, fault detection,
and predictive maintenance. This paper presents a systematic review of the latest Al techniques—ranging from
machine learning (ML) and deep learning (DL) to hybrid and explainable Al (XAI) models—deployed in FPV
systems. It examines key components such as data inputs, model architectures, simulation tools, and performance
metrics including RMSE, MAE, and R2. Through comparative analysis and real-world case studies across geographies,
the review highlights the growing role of Al in enhancing FPV system scalability, reliability, and efficiency.
Keywords: Floating solar, FPV, Artificial Intelligence, Machine Learning, Deep Learning, Forecasting, Smart grid,
Renewable energy, XAl, Photovoltaic optimization.
. Introduction

In the face of global climate change, rising energy demands, and the depletion of conventional fossil fuel resources,
solar energy has emerged as a vital component in the transition to sustainable energy systems. While ground-mounted
photovoltaic (PV) systems have become widely adopted, they pose certain limitations—maost notably, the requirement
for vast land areas, which often competes with agriculture, urban development, and biodiversity conservation. This
challenge has sparked interest in innovative alternatives such as Floating Photovoltaic (FPV) systems, also known as
floating solar farms. The placing of PV panels on top of bodies of water is called floating photovoltaics (FPV) or
floatovoltaics [1]. Countries that are facing challenges with land availability for PV farms are looking towards the
potential of FPV. FPVs involve the deployment of solar panels on buoyant structures placed on water bodies like
reservoirs, lakes, ponds, and even offshore locations [2]. This approach not only helps preserve land but also offers
multiple technical and environmental advantages. The water beneath the panels provides a natural cooling effect,
which can significantly improve the efficiency and lifespan of the solar modules. Additionally, FPVs reduce water
evaporation in arid regions, contributing to water resource management. By leveraging underutilized water surfaces,
FPVs also support decentralized power generation and can be easily integrated into existing hydropower
infrastructure, offering hybrid energy solutions [3]. As a result, FPVs are rapidly expanding across countries such as
China, India, Japan, and the Netherlands, and are viewed as a key innovation in the global renewable energy landscape.
Despite their numerous advantages, FPV systems face several unique and complex challenges [4]. These include
fluctuating weather patterns, wave dynamics, anchoring and mooring issues, and maintenance difficulties due to their
aquatic environment [5]. In addition, predicting energy output from floating systems is inherently more difficult due
to changing irradiance, temperature variations, and the limited availability of high-quality FPV datasets. Traditional
control and monitoring systems often fall short in handling such complexity in real time. This has led to a growing
interest in Artificial Intelligence (Al) as a transformative tool for managing and optimizing floating solar power plants
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Fig. 1. Classification of solar
Al techniques, particularly machine learning (ML), deep learning (DL), and evolutionary algorithms, offer powerful
capabilities for pattern recognition, predictive analytics, and decision-making. In FPV applications, Al can be used to
accurately forecast solar radiation, identify and classify system faults, optimize tilt angles and array layouts, perform
intelligent maintenance scheduling, and even predict system degradation over time [7]. Deep learning models can
process satellite images and sensor data to improve the accuracy of weather predictions, while ML algorithms can
learn from historical data to optimize energy harvesting strategies [8]. Furthermore, Al-driven control systems can
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adapt dynamically to environmental changes, enhancing both the reliability and resilience of FPV operations. The
integration of Al into FPVs is not just about automation—it's about enabling smarter, more adaptive energy systems
that can self-learn, self-correct, and continuously improve without manual intervention. As floating solar technology
scales up, the synergy between Al and FPVs is expected to play a critical role in making solar energy more efficient,
predictive, and scalable for the future [9]. This review aims to systematically analyze and categorize various Al
techniques applied to FPV systems, evaluating their effectiveness and performance. The paper explores how different
Al models—such as machine learning, deep learning, and hybrid approaches—are being used to solve key challenges
in FPVs. It also benchmarks their accuracy, efficiency, and real-world applicability by reviewing key studies and
experiments. The ultimate goal is to provide researchers, developers, and policymakers with a clear understanding of
how Al is shaping the future of floating solar technology.
II.  FLOATING SOLAR POWER PLANTS
These floating solar plants are installed on water reservoirs like dams, lakes, rivers, oceans, etc. [10]. The solar panels
are mounted on floating platforms which are anchored tightly to so that it will not get damaged even under the worse
weather conditions. Moreover, research suggests that solar panels installed on land surfaces results in the reduction of
yields, as the ground gets heated up and affects the rear surfaces of solar panel [11]. Studies also suggests that if the
rear surfaces of solar panels are placed on the top of the water, the solar panels will be able to cool themselves more
efficiently which means they will last longer and they can shade the water they float on which reduces evaporation by
up to 70%, also their ability to generate power goes up as high as to 16% [12]. The combination of PV plant technology
and floating technology gives a photovoltaic (PV) floating power generation. This fusion of new concept consists of
floating system which is a floating body (structure + floater) that allows the installation of the PV module, PV system
i.e., PV generation equipment, similar to electrical junction boxes, that are installed on top of the floating system and
underwater cable which transfers the generated power to the PV system development [13].
' »

Fig. 2 Basic structure of floating solar power plant [14]

Figure 2 illustrates the basic structure of a floating solar power plant, highlighting its key components and operational
layout. At the center of the system are the PV (photovoltaic) modules mounted on pontoons, which provide buoyancy
and support to keep the solar panels afloat on the water surface. The generated electricity is transmitted to the shore
through underwater cables, ensuring safe and efficient power transfer. To maintain stability and prevent drifting due
to wind or water currents, the system is anchored using a mooring system that fixes the floating platform in place. On
land, the electricity passes through a power converter that conditions the output, and then is transferred to the grid via
power transmission lines. This layout exemplifies how floating solar plants utilize available water surfaces while
integrating seamlessly into existing electrical infrastructure.
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Fig. 3 A 145-megawatt floating solar plant

Figure 3 shows a 145-megawatt floating solar plant, demonstrating the large-scale deployment of photovoltaic
modules on a water body. This setup reflects the growing trend of utilizing unused water surfaces for clean energy
generation, helping to reduce land usage while maximizing solar energy capture. The plant highlights the scalability
and efficiency of floating solar technology in supporting sustainable power infrastructure.
Floating solar arrays are PV systems that float on the surface of drinking water reservoirs, quarry lakes, irrigation
canals or remediation and tailing ponds. A small number of such systems exist in France, India, Japan, South Korea,
the United Kingdom, Singapore and the United States. The systems are said to have advantages over photovoltaic
plant on land. The cost of land is more expensive, and there are fewer rules and regulations for structures built on
bodies of water not used for recreation. Unlike most land based solar plants; floating arrays can be unobtrusive because
they are hidden from public view. They achieve higher efficiencies than PV panels on land, because water cools the
panels. The panels have a special coating to prevent rust or corrosion.

A. Components of floating power plant
Floating Solar Power plant is an innovative concept in energy technology to meet the needs of our time. The floating
PV system is a new method of solar-energy generation utilizing water surface available on dams, reservoirs, and other
bodies of water resulting from the combination of PV technology and floating technology The floating PV plant
consists of a floating system, mooring system, PV system and underwater cables [15].

1. Pontoon/ Floating Structure
A pontoon is a floating platform designed with sufficient buoyancy to support heavy loads while remaining stable on
the water surface. It serves as the foundation for mounting multiple photovoltaic (PV) modules. The structural design
ensures durability and balance, enabling efficient solar energy capture while withstanding environmental forces [16].
The floating structure is a critical component that enables the installation and operation of solar modules on water
bodies. Add weight-effective plastic recesses several times to form a larger pontoon. Floats are generally made of
HDPE (high-density. polythene), which is identified for its precise, nonrenewable strength, UV resistance and,
corrosion resistance. GRP (Glass fiber reinforced plastic) can also be used to create float platforms. HDPE is typically
used to fuel tanks production, bottles and, pipes for water supply and can also be reprocessed [17].

& PONTOON Floating Desk

Fig. 4. Pontoon Structure [18].
Figure 4 depicts the pontoon structure used in floating solar power plants. The image shows modular, interlocking
floating units—often referred to as floating desks—which combine to form a stable platform on the water. Made of
durable, UV-resistant plastic, these pontoons are designed to provide high buoyancy and structural support for
mounting photovoltaic (PV) panels. Their interlocking design ensures flexibility and ease of assembly, allowing the
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formation of various configurations depending on the plant size and site conditions. This structure serves as the
floating foundation for the entire solar array deployed over the water surface.
2. Mooring system

Mooring systems generally refer to permanent structures capable of storing containers. Examples include quays,
wharfs, jetties, piers, anchor buoys, and mooring buoys. When the solar system is turned off, the system can keep the
panel in the same position in the morning and prevent the panel from folding or turning off. Installing a mooring
system in deep water can be difficult and expensive. A wire rope and a nylon harness can be used to complete the
mooring system of the exit platform. The rope can be attached to the terminal on the edge and hit at any corner [19].

Fig. 5. Mooring system of floating PV with active cooling design

Figure 5 illustrates the mooring system of a floating photovoltaic (PV) plant integrated with an active cooling design.
The image shows a large array of solar panels mounted on a floating platform, secured in place by a network of
mooring lines connected to anchoring points. These mooring lines prevent the structure from drifting due to wind or
water currents while allowing flexibility to accommodate changes in water levels. The highlighted yellow outlines
represent the mooring framework encircling the array. The design also supports active cooling, which helps maintain
optimal panel temperatures, thereby enhancing energy conversion efficiency and prolonging system lifespan in high-
temperature environments.

3. Solar Module
Solar modules, also known as photovoltaic (PV) modules, are the primary energy-generating components of the
floating solar plant. These modules are mounted on the floating structure and work by converting sunlight into
electrical energy. Since each module generates a limited amount of power, multiple modules are typically connected
inan array. A complete PV system often includes modules, a solar inverter, interconnection wiring, and in some cases,
battery storage and solar trackers. Floating solar systems commonly use crystalline silicon-based PV modules due to
their efficiency and reliability [20].

4. Cabling
Cabling in floating solar systems is essential for transmitting the generated electricity from the floating PV modules
to the onshore substation. These cables are designed for harsh environmental conditions and are resistant to ultraviolet
(UV) radiation, moisture, and extreme temperature changes. Given their exposure to outdoor environments and
potential submersion, solar cables used in FPV systems are highly durable, weather-resistant, and capable of
maintaining stable performance under dynamic conditions [21].

B. Merits Of Floating Power Plant
Floating solar power plants offer several advantages over traditional ground-mounted and rooftop solar systems,
particularly in terms of performance and environmental impact. One of the key benefits is the increased energy
efficiency—thanks to the natural cooling effect of the water beneath the panels, floating PV systems typically generate
more electricity than their land-based counterparts [22]. Additionally, by shading the water surface, these installations
help to significantly reduce water evaporation and inhibit algae growth, contributing to better water resource
management, especially in arid regions. The floating platforms are also engineered for durability, capable of
withstanding harsh weather conditions such as storms, typhoons, and strong winds, making them reliable even in
extreme environments. Moreover, these systems are designed using high-density polyethylene (HDPE), a material
that is 100% recyclable, UV-resistant, and corrosion-resistant, ensuring both sustainability and long-term structural
integrity [23].
Another major advantage of floating solar systems is their minimal land disturbance. Unlike ground-mounted systems,
which often require large tracts of land that could otherwise be used for agriculture or forestry, floating plants utilize
unused water bodies such as lakes, reservoirs, and ponds. This helps in conserving the natural landscape and
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maintaining biodiversity. Additionally, floating solar plants can accommodate a large number of PV modules, making
them suitable for utility-scale installations [24]. Their modular design allows for easy and quick deployment, often
with shorter installation timelines compared to ground systems. Combined with their adaptability to a wide range of
geographic locations with abundant sunlight, floating solar power plants present a highly efficient, eco-friendly, and
scalable solution for renewable energy generation [25].

I1. Foundations of Al in Solar PV Systems
The use of Artificial Intelligence (Al) in solar photovoltaic (PV) systems has grown substantially in recent years,
enabling improved performance in forecasting, control, and fault detection. Among Al techniques, Machine Learning
(ML) and Deep Learning (DL) models such as Artificial Neural Networks (ANNS), Support Vector Machines (SVMs),
Extreme Learning Machines (ELMs), and Long Short-Term Memory (LSTM) networks are widely used due to their
ability to handle complex, nonlinear, and time-dependent data patterns [26]. ANNs have been praised for their
robustness in approximating nonlinear relationships in PV output prediction, though they require long training times
and large datasets [27]. SVMs, on the other hand, have proven efficient for smaller datasets and offer strong
generalization abilities in high-dimensional feature spaces [28]. ELMs have demonstrated high-speed training and
solid prediction accuracy in studies focused on short-term PV forecasting under fluctuating weather conditions [29].
LSTM networks stand out for time-series forecasting, where their ability to remember long-term dependencies has
made them superior in predicting solar irradiance and power generation over time [30]. In recent years, the field has
also embraced Explainable Al (XAl) to make complex Al models more interpretable and transparent. XAl tools such
as SHAP (Shapley Additive Explanations) and LIME (Local Interpretable Model-Agnostic Explanations) are now
being applied in solar power forecasting to understand the contribution of each input variable to the final prediction
[31]. These methods not only help in model debugging and trust building but also improve decision-making for PV
system operators by identifying the most influential parameters, such as solar irradiance, temperature, and humidity
[32]. However, current XAl adoption is more prevalent in ML than DL models due to challenges in interpreting deep
architectures [33].
Another crucial aspect in PV forecasting models is the quality and variety of input data. Common data sources include
satellite observations, meteorological stations, on-site sensors, and open-access datasets like NASA’s POWER or the
National Renewable Energy Laboratory (NREL) archives [34]. Parameters such as solar irradiance, panel temperature,
wind speed, tilt angle, and humidity are commonly used to train Al models [35]. Some studies have proposed hybrid
approaches combining statistical decomposition methods (e.g., STL or EMD) with Al models to improve accuracy by
preprocessing noisy input signals [36]. Overall, the synergy between sophisticated algorithms, explainable
frameworks, and rich data sources forms the backbone of reliable and accurate solar PV system modeling [37].

Table 1: Comparative Overview of Al Techniques and Applications in Solar PV Systems

Al Technique Advantage Application in PV | Limitation Ref. No.
Systems
Machine Handle  complex, | Forecasting, control, | Model selection | [26]
Learning & | nonlinear, and time- | and fault detection and data
Deep Learning dependent patterns dependency
ANN (Artificial | Robust in modeling | PV output prediction | Needs large | [27]
Neural Network) | nonlinear datasets and long
relationships training times
SVM  (Support | Works well  with | Performance Depends on kernel | [28]
Vector Machine) | small datasets and | prediction and | and tuning
high-dimensional classification
data
ELM (Extreme | Fast training and [ Short-term PV | Sensitive to | [29]
Learning good prediction | forecasting  under | initialization, less
Machine) accuracy changing weather robust
LSTM  (Long | Learns  long-term | Solar irradiance and | Computational [30]
Short-Term dependencies in | power prediction cost, needs careful
Memory) time-series parameter tuning
Explainable Al | Makes Al models | Explaining feature | Difficult to apply to | [31]
(XAl) Tools | transparent and | impact in  solar | deep models
(SHAP, LIME) | interpretable forecasting
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Importance  of | Identifies key | Assists in  model | Depends on | [32]
Input Parameters | features like | interpretation  and | accurate and
irradiance, temp, | system decisions reliable feature data
humidity
XAl Adoptionin | Insight into why | Enhances trust and | Less developed for | [33]
DL Models predictions are made | usability in complex | deep learning
models architectures
Data  Sources | Rich, varied sources: | Input to forecasting | Can be noisy or | [34]
(e.g., NASA, | satellite, sensors, | models incomplete
NREL) open datasets
Meteorological Includes irradiance, | Core features for Al | Must handle data | [35]
& Sensor | temp, humidity, tilt | model training variation and errors
Parameters angle, etc.
Hybrid Maodels | Preprocessing Used in forecasting | Complexity — and | [36]
(e.g., STL + Al) | improves accuracy | under real-world | integration issues
in noisy conditions weather variation
Integrated ~ Al- | Combines Full solar PV system | Balancing [37]
Powered PV | algorithms, XAl, | optimization accuracy,  speed,
Modeling and data for high and interpretability
performance

Table 1 provides a structured comparison of various Artificial Intelligence (Al) techniques and supporting components
used in solar photovoltaic (PV) system modeling. It outlines the key advantages, specific applications, and notable
challenges associated with each method. Each row corresponds to a particular Al model, data consideration, or
framework, with an associated reference number linking back to relevant research or literature. This table highlights
the synergy between machine learning models, explainability tools, and diverse data sources in enhancing the
accuracy, interpretability, and reliability of PV forecasting and control systems.

IV.  Studies and Benchmarking
A comparative analysis of Al techniques for solar PV systems reveals a wide array of models, each offering unique
strengths under varying environmental conditions and use cases. Among the most prominent are ANN, SVM, ELM,
and LSTM. Studies show that while ANN offers high accuracy in energy forecasting tasks, its performance may
degrade under partial shading without hybridization [38]. SVM has been shown to outperform traditional methods
under dynamic weather due to its ability to handle high-dimensional data with different kernel functions [39].
Meanwhile, ELM provides faster computation and competitive accuracy, especially in systems requiring real-time
responses [40]. LSTM, known for its strength in handling time-series data, has emerged as a preferred deep learning
architecture in long-term PV power forecasting, particularly in environments with strong temporal correlations in solar
irradiance data. Performance benchmarking relies heavily on evaluation metrics such as Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), R-squared (R?), and Mean Absolute Percentage Error (MAPE). These metrics
are commonly used to compare the prediction accuracy of different Al models across real-time and historical datasets.
For example, Das et al. reported that the SVM model achieved RMSE and MAE values of 12.41% and 6.95%,
respectively, significantly outperforming classical regression methods [41]. Other comparative studies show that ANN
and LSTM models consistently outperform other algorithms across multiple benchmarks, with accuracies exceeding
90% when trained on adequately preprocessed datasets [42][43]. Real-world implementations of these Al techniques
vary geographically, reflecting different solar potential and policy environments. In Japan and Germany, Al models
are used in large-scale solar farms with integrated weather forecasting systems [44]. In India and North Africa, hybrid
models (e.g., SVM+PSO or ANN+Wavelet) are adopted to deal with irregular solar patterns caused by monsoonal
and desert climates [45]. Some implementations also utilize floating solar systems, particularly in water-scarce
regions, with Al optimizing panel angle and cleaning schedules [46].
The choice of simulation tools and datasets significantly affects benchmarking outcomes. Widely used platforms
include MATLAB/Simulink, Python (Scikit-learn, TensorFlow), and PV-specific libraries like PVsyst. Real-world
datasets such as NASA POWER, NREL, and site-specific sensor data are used for training and validating models.
Researchers have also employed synthetic datasets generated using solar simulators or data augmentation techniques
to overcome the lack of continuous real-world observations [47]. Furthermore, digital twin frameworks and big data
integration are emerging trends in enhancing simulation fidelity and benchmarking depth [48].
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Table 2: Comparative Overview of Al Techniques, Performance Metrics, and Real-World Applications in Solar PV

Systems
Al Technique Advantage Application Limitation Ref. No.
ANN under Partial | High  accuracy in | Energy forecasting in | Degrades under | [38]
Shading energy forecasting PV systems partial shading
without hybrid
approach
SVM with Kernel | Effective in dynamic | Solar forecasting in | Requires  careful | [39]
Functions weather; handles high- | varying climates kernel selection
dimensional data
ELM for Real- | Faster computation | Real-time responsive | May be less robust | [40]
Time Prediction with competitive | PV systems to noise
accuracy
LSTM for Time- | Strong in learning | Long-term PV power | Computational [41]
Series Forecasting | temporal patterns in | prediction complexity
irradiance
SVM Benchmark | RMSE: 12.41%, MAE: | Benchmarking Needs optimal | [42]
by Das et al. 6.95% — | accuracy of models parameter tuning
outperforming
regression methods
ANN & LSTM | Accuracy >90% with | Benchmark studies on | Dependent on data | [43]
Accuracy good preprocessing multiple datasets preprocessing
quality
LSTM Dominance | Consistently better | Used across different | Needs large datasets | [44]
in Benchmarks accuracy than | environments and computation
traditional models
Large-Scale Use in | Integrated Al  with | Grid-connected PV | Relies on quality of | [45]
Japan & Germany | weather forecasting in | systems weather data
solar farms systems
Hybrid Al in India | Combines Al with | Solar ~forecasting in | Increased [46]
& North Africa metaheuristics  (e.g., | desert/monsoon zones | complexity, harder
SVM+PSO) to handle to maintain
irregular irradiance
Floating Solar with | Al helps optimize tilt | Deployed in water- | Deployment  and | [47]
Al and cleaning schedules | scarce regions maintenance
challenges
Tools & Dataset | Use of platforms like | Model simulation and | Accuracy depends | [48]
Selection MATLAB, Python, | validation on tool and dataset
PVsyst with quality
NASA/NREL data

Table 2 provides a detailed comparative analysis of various Artificial Intelligence (Al) techniques and their real-world
applications in solar photovoltaic (PV) systems. It highlights how models such as ANN, SVM, ELM, and LSTM offer
distinct advantages in forecasting and decision-making, depending on the environmental conditions and data
availability. The table also presents performance benchmarks using standard error metrics, showing how models like
SVM and LSTM outperform traditional approaches. Furthermore, it explores practical implementations across
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different regions, such as the use of hybrid models in India and floating solar systems in water-scarce areas. The choice
of simulation tools and datasets, as well as the integration of advanced technologies like digital twins and big data,
plays a crucial role in determining the effectiveness and reliability of Al-driven PV system modeling. Each row is
supported by a specific reference to ensure traceability and credibility of the information presented.

V. ENVIRONMENTAL EFFECTS OF FLOATING SOLAR

Floating solar platforms are innovative systems that enable standard photovoltaic (PV) panels to be installed on the
surface of large water bodies such as drinking water reservoirs, quarry lakes, irrigation canals, tailing ponds, and
wastewater lagoons. These systems provide a practical solution for regions or industries where land availability is
limited or where land use is prioritized for agriculture, infrastructure, or conservation. By utilizing unused water
surfaces, floating solar helps avoid land acquisition costs and land-use conflicts, making it especially attractive for
densely populated or land-scarce areas [49]. A simple, modular, and cost-effective floating solar platform is
particularly well-suited for energy- and water-intensive industries that cannot afford to compromise on either resource.
Industries such as wineries, dairy farms, fish farms, mining operations, wastewater treatment facilities, irrigation
districts, and public water agencies stand to benefit significantly from this dual-purpose approach [50]. The synergy
created between sun and water not only generates clean energy but also reduces water evaporation due to the shading
effect of the panels, conserves water quality by limiting algae growth, and can improve panel efficiency due to the
cooling effect of the underlying water surface. Furthermore, floating solar can be integrated with existing water
infrastructure without disrupting current usage patterns. For example, in fish farms or irrigation canals, it is possible
to install PV systems without hindering operational access or aquatic ecosystems. This makes floating solar an
appealing sustainable technology that supports decarbonization while addressing critical water and land resource
challenges. As energy demand and climate pressures increase, the adoption of floating solar platforms represents a
smart, multipurpose solution aligned with both environmental and economic goals [51].

VI. Challenges

One of the most persistent challenges in applying Al to solar PV systems is the availability and quality of data.
Accurate forecasting and fault detection depend heavily on high-resolution, time-synchronized, and long-term datasets
that capture variables like solar irradiance, temperature, humidity, and panel conditions. However, in many regions—
especially developing countries—meteorological stations are sparse, sensor calibration is inconsistent, and missing or
noisy data is common. Public datasets like NASA POWER or NREL are valuable but often lack the granularity or
local relevance needed for highly accurate predictions. This limitation affects the training and validation of Al models,
particularly those requiring large and diverse datasets such as LSTM or deep hybrid models. As Al models grow more
advanced, so does their demand for computational resources. Deep learning architectures like LSTM, CNNSs, and
hybrid Al models combining optimization algorithms (e.g., ANN + PSO or SVM + GA) offer high accuracy but come
with increased training time, memory requirements, and complexity in tuning hyperparameters. This creates barriers
for real-time deployment in edge environments, such as remote PV installations where computing power and internet
connectivity are limited. Moreover, highly complex models may act as “black boxes,” limiting their interpretability
and acceptance among PV system operators who require transparent, explainable models for operational decision-
making. To overcome current gaps, emerging Al trends are gaining traction. Edge Al allows models to run locally on
low-power devices, enabling real-time analytics at the source—ideal for remote or off-grid PV systems. Transfer
Learning offers a solution to data scarcity by allowing pre-trained models on large datasets to be fine-tuned with
smaller, local datasets, reducing the need for extensive retraining. Federated Learning is another promising approach
that enables collaborative model training across decentralized data sources (e.g., multiple solar farms) without
compromising data privacy. These innovations, coupled with improved data governance and standardized protocols,
can significantly enhance scalability and reliability.

VII. Conclusion

Floating Photovoltaic (FPV) systems represent a transformative step in sustainable energy production by addressing
land scarcity while maximizing energy yield through natural cooling and water-shading benefits. However, their
deployment brings forth new operational challenges due to environmental variability and structural dynamics. This
review demonstrates how Atrtificial Intelligence (Al) is not only well-suited but essential for optimizing FPV systems.
Machine Learning models like SVM and ANN offer effective short-term forecasting, while Deep Learning models
such as LSTM and CNN provide robust long-term predictive capabilities. The integration of Explainable Al (XAl)
and hybrid methods enhances both transparency and performance. Furthermore, advancements in edge computing,
digital twins, and federated learning are paving the way for autonomous, scalable FPV solutions. Real-world
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implementations in countries like India, Japan, and Germany affirm the practical viability of these smart systems under
varied environmental and regulatory settings. Still, challenges remain in terms of data availability, computational cost,
and standardization. Future research should focus on high-fidelity simulations, localized datasets, and adaptable Al
frameworks. As FPV deployment accelerates globally, Al will serve as a critical enabler for smarter, cleaner, and
more resilient energy infrastructure.
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